22/14(a)

The University of Sydney

<u>CHEM1108 - CHEMISTRY 1A LIFE SCIENCES</u> <u>FIRST SEMESTER EXAMINATION</u>

CONFIDENTIAL

JUNE 2009

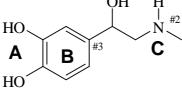
TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID						
NAME		NUMBER						
OTHER		TABLE						
NAMES		NUMBER						

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 20 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a ●.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution. Logarithms may also be used.
- Numerical values required for any question as well as a Periodic Table are printed on a separate data sheet.
- Pages 16, 22 and 24 are for rough work only.


OFFICIAL USE ONLY

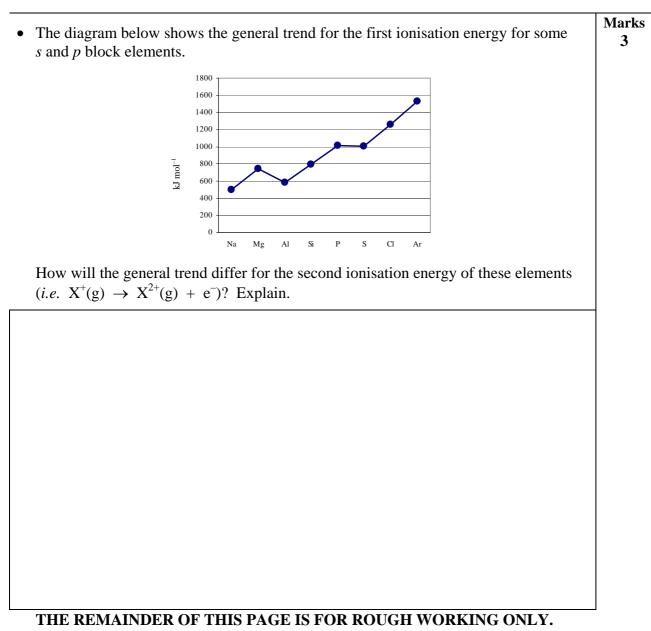
Multiple choice sectionMarksPages2-1130

Short answer section

		Marks		
Page	Max	Gained		Marker
12	9			
13	8			
14	4			
15	3			
17	11			
18	4			
19	7			
20	6			
21	8			
23	10			
Total	70			
Check	Total			

Marks • Complete the following table, giving either the systematic name or the molecular 2 formula as required. Formula Systematic name NaHSO₄ arsenic(III) chloride CrCl₃·6H₂O silver dichromate • Complete the following table, providing the ground state electron configuration for each 3 of the following species. Species Ground state electron configuration chlorine atom magnesium ion arsenic(V) ion • Like most medicines, the platinum complex, cisplatin, *cis*-[PtCl₂(NH₃)₂], is both 4 effective and toxic. What is cisplatin used to treat? What does the cisplatin react with in the body to cause most of the toxicity? Draw a graph showing the relationship between overall health and the level of platinum in the body of a healthy person.

List the types of intermolecular interactions that each of the following sites on adrenaline would be involved in if dissolved in water.

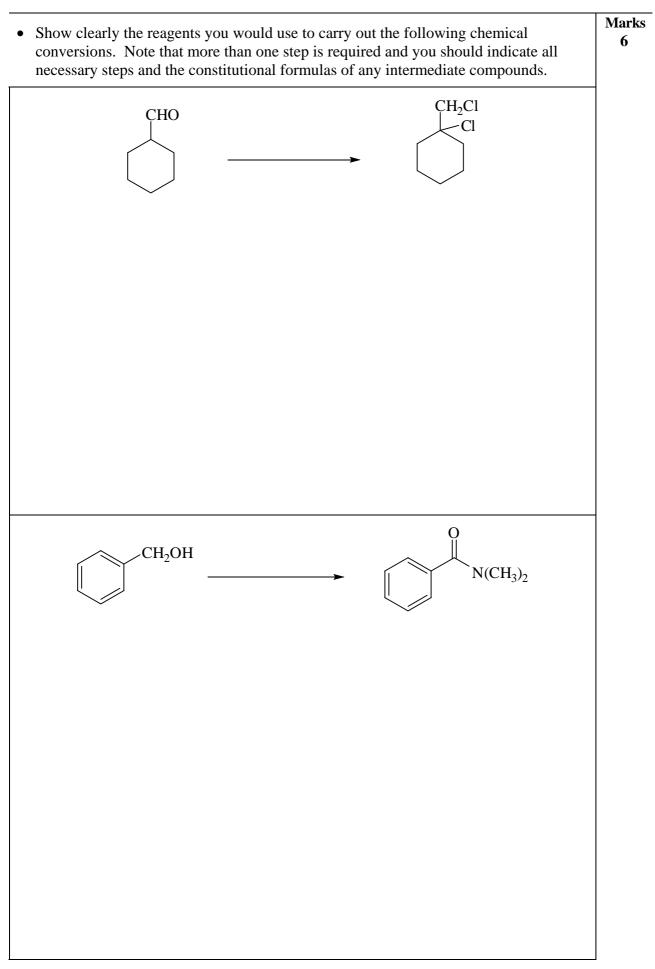

Α	
В	
С	

Pharmaceuticals with amine groups are frequently supplied as their "hydrochloride salts". Draw the structure that would result if adrenaline were reacted with one equivalent of HCl. What **additional** intermolecular forces would be present if this form of adrenaline were dissolved in water?

Provide the requested information for each of the indicated sites on adrenaline.

Atom	Geometric arrangement of the electron pairs around the atom	Hybridisation of the atom	Geometry around the atom	Approximate angles around the atom
^{#1} O				
^{#2} N				
#3C				

• Cadmium chloride and cadmium sulfate are both soluble in water. Describe, using equations where appropriate, how to convert cadmium chloride into cadmium sulfate.	Marks 4
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.	



Marks • Complete the following table. Make sure you complete the name of the starting 11 material or major product where indicated. CONSTITUTIONAL **REAGENTS**/ FORMULA(S) OF MAJOR STARTING MATERIAL CONDITIONS ORGANIC PRODUCT(S) HBr / CCl₄ (solvent) Ο ЮH 0 Name: CH₃CH₂CHCH₂CH₃ $\begin{array}{c} CH_{3}CH_{2}CHCH_{2}CH_{3}\\ & \overset{\odot}{Br}^{+}N(CH_{3})_{3} \end{array}$ Br Name: HO Η $[Ag(NH_3)_2]^{\oplus} / OH^{\ominus}$ Ô റ 3 M NaOH / heat O OCH₃ O OCH₃ Name: Br hot conc. KOH in ethanol solvent

Marks • Acyclovir is an analogue of the nucleoside guanosine, and is used clinically as an 4 antiviral agent. νH acyclovir HO NH_2 Hydrolysis of acyclovir gives the nucleic base guanine, a diol and a carbonyl compound. Give the structures of guanine, a tautomer of guanine, and the diol and carbonyl compounds formed. tautomer of guanine guanine the diol the carbonyl compound

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Morphine is the principal active agent in opium and is a highly potent analgesic drug. 7 Its structure and conversion into codeine (a moderate analgesic) and pholcodine (a cough suppressant) are shown below. HO $\underline{O}H^{\Theta}$ intermediate A Ó Ē Η CH₃ HO reagent B CH₃I morphine codeine 0 pholcodine Ē CH₃ H HO Give the molecular formula of morphine. How many stereogenic (chiral) centres are there in morphine? Identify the functional groups present in morphine. Draw the structures of codeine and reagent B. codeine reagent B

СНО	
Н——ОН	
но—н	
но—н	
_	
D guidelose	
Haworth structure of α -D-galactopyranose	
nnose is treated with acidified methanol.	
isaccharide formed from D-mannose and	
s at the anomeric carbon atoms.	
harides can be formed from D-mannose and	
harides can be formed from D-mannose and tween any two of these compounds?	
j	H HO H HO H HO H HO H H HO H D-galactose Haworth structure of α -D-galactopyranose mose is treated with acidified methanol.

Marks • Glutathione is an important tripeptide (Glu-Cys-Gly) which acts as an antioxidant, 10 protecting cells from toxins such as free radicals. It is an unusual peptide in that the peptidic linkage with glutamic acid (Glu) involves the carboxylic acid group in the side chain. SH Η COOH HOOC N H ≣ NH₂ glutathione 0 Give the product when glutathione undergoes oxidation. Draw the Fischer projections of the three amino acids (in their natural absolute configurations, where applicable) that result from the vigorous acid hydrolysis (with 6 M HCl) of glutathione. Draw the major species present when glutamic acid (Glu) is dissolved in water at pH 1 and pH 12. The p K_a values of glutamic acid are 2.1 (α -COOH), 9.5 (α -NH₃^{\oplus}) and 4.0 (side chain). pH 1 pH 12 Give the constitutional formula for the dipeptide Cys-Gly in its zwitterionic state.

CHEM1108 - CHEMISTRY 1A LIFE SCIENCES

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ $= 0.08206 \ {\rm L} \ {\rm atm} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^{3}	kilo	k				
10^{-6}	micro	μ	10^{6}	mega	Μ				
10^{-9}	nano	n	10^{9}	giga	G				
10^{-12}	pico	р							

CHEM1108 - CHEMISTRY 1A LIFE SCIENCES

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O$	+1.51
$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq}) + 3\mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04

CHEM1108 - CHEMISTRY 1A LIFE SCIENCES

Usefi	ıl formı	ulas
00010		

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
${}^{14}\text{C} \text{ age} = 8033 \ln(A_0/A_t) \text{ years}$	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative properties	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R\ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2
$\mathcal{L} = \Lambda \frac{1}{4\pi\varepsilon_0 r} \mathcal{I}_{\mathrm{A}}$	Surface area of sphere = $4\pi r^2$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
HYDROGEN H																	нелим Не
1.008																	4.003
3	4											5	6	7	8	9	10
LITHIUM	BERYLLIUM											BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
Li	Be											B	C	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 sodium	12 magnesium											13 ALUMINIUM	14 SILICON	15 phosphorus	16 sulfur	17 CHLORINE	18 ARGON
Na	Mg											Al	Si	P	S	Cl	Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37 RUBIDIUM	38 strontium	39 yttrium	40 zirconium	41 NIOBIUM	42 molybdenum	43 TECHNETIUM	44 ruthenium	45 RHODIUM	46 palladium	47 SILVER	48 cadmium	49 INDIUM	50 TIN	51 ANTIMONY	52 TELLURIUM	53 IODINE	54 XENON
Rb	SRONHUM	Y	Zr	Nobilom	MOLYBDENOM	Tc	Ru	Rh	PALLADIOM	Ag	Cd	In	Sn	Sb	Te	I	XENON
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
CAESIUM	BARIUM	57 71	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103		105	106	107	108	109	110	111							
FRANCIUM			RUTHERFORDIUM		SEABORGIUM	BOHRIUM DL	HASSIUM	MEITNERIUM		ROENTGENIUM							
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]							

LANTHANOID S	57 Lanthanum La 138.91	58 cerium Ce 140.12	59 praseodymium Pr 140.91	60 ^{NEODYMIUM} Nd 144.24	61 ^{ркометніцм} Рт [144.9]	62 samarium Sm 150.4	63 ^{еигортим} Eu 151.96	64 gadolinium Gd 157.25	65 terbium Tb 158.93	66 _{dysprosium} Dy 162.50	67 ^{ноіміим} Но 164.93	68 егвіим Er 167.26	69 ^{тнилим} Тт 168.93	70 ^{ytterbium} Yb 173.04	71 LUTETIUM Lu 174.97
ACTINOIDS	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	астіліци	^{тновим}	protactinium	uranium	Neptunium	Plutonium	Americium	^{CURIUM}	berkellium	californium	EINSTEINIUM	^{fermium}	mendelevium	Nobelium	Lawrencium
	Ас	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	[227.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.1]	[247.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

22/14(b)

PERIODIC TABLE OF THE ELEMENTS